114 research outputs found

    Sensory information in perceptual-motor sequence learning: visual and/or tactile stimuli

    Get PDF
    Sequence learning in serial reaction time (SRT) tasks has been investigated mostly with unimodal stimulus presentation. This approach disregards the possibility that sequence acquisition may be guided by multiple sources of sensory information simultaneously. In the current study we trained participants in a SRT task with visual only, tactile only, or bimodal (visual and tactile) stimulus presentation. Sequence performance for the bimodal and visual only training groups was similar, while both performed better than the tactile only training group. In a subsequent transfer phase, participants from all three training groups were tested in conditions with visual, tactile, and bimodal stimulus presentation. Sequence performance between the visual only and bimodal training groups again was highly similar across these identical stimulus conditions, indicating that the addition of tactile stimuli did not benefit the bimodal training group. Additionally, comparing across identical stimulus conditions in the transfer phase showed that the lesser sequence performance from the tactile only group during training probably did not reflect a difference in sequence learning but rather just a difference in expression of the sequence knowledge

    Neural correlates of encoding and expression in implicit sequence learning

    Full text link
    In the domain of motor learning it has been difficult to separate the neural substrate of encoding from that of change in performance. Consequently, it has not been clear whether motor effector areas participate in learning or merely modulate changes in performance. Here, using a variant of the serial reaction time task that dissociated these two factors, we report that encoding during procedural motor learning does engage cortical motor areas and can be characterized by distinct early and late encoding phases. The highest correlation between activation and subsequent changes in motor performance was seen in the motor cortex during early encoding, and in the basal ganglia during the late encoding phase. Our results show that rapid encoding during procedural motor learning involves several distinct processes, and is represented primarily within motor system structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46543/1/221_2005_Article_2284.pd

    Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9.

    Get PDF
    The advent of the easily programmable and efficient CRISPR/Cas9 nuclease system has revolutionized genetic engineering. While conventional gene knockout experiments using CRISPR/Cas9 are very valuable, these are not well suited to study stage-specific gene function in dynamic situations such as development or disease. Here we describe a CRISPR/Cas9-based OPTimized inducible gene KnockOut method (OPTiKO) for conditional loss-of-function studies in human cells. This approach relies on an improved tetracycline-inducible system for conditional expression of single guide RNAs (sgRNAs) that drive Cas9 activity. In order to ensure homogeneous and stable expression, the necessary transgenes are expressed following rapid and efficient single-step genetic engineering of the AAVS1 genomic safe harbor. When implemented in human pluripotent stem cells (hPSCs), the approach can be then efficiently applied to virtually any hPSC-derived human cell type at various stages of development or disease

    Impact of sex, MHC, and age of recipients on the therapeutic effect of transferred leukocytes from cancer-resistant SR/CR mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous Regression/Complete Resistant (SR/CR) mice are resistant to cancer through a mechanism that is mediated entirely by leukocytes of innate immunity. Transfer of leukocytes from SR/CR mice can confer cancer resistance in wild-type (WT) recipients in both preventative and therapeutic settings. In the current studies, we investigated factors that may impact the efficacy and functionality of SR/CR donor leukocytes in recipients.</p> <p>Results</p> <p>In sex-mismatched transfers, functionality of female donor leukocytes was not affected in male recipients. In contrast, male donor leukocytes were greatly affected in the female recipients. In MHC-mismatches, recipients of different MHC backgrounds, or mice of different strains, showed a greater negative impact on donor leukocytes than sex-mismatches. The negative effects of sex-mismatch and MHC-mismatch on donor leukocytes were additive. Old donor leukocytes performed worse than young donor leukocytes in all settings including in young recipients. Young recipients were not able to revive the declining function of old donor leukocytes. However, the function of young donor leukocytes declined gradually in old recipients, suggesting that an aged environment may contain factors that are deleterious to cellular functions. The irradiation of donor leukocytes prior to transfers had a profound suppressive effect on donor leukocyte functions, possibly as a result of impaired transcription. The cryopreserving of donor leukocytes in liquid nitrogen had no apparent effect on donor leukocyte functions, except for a small loss of cell number after revival from freezing.</p> <p>Conclusion</p> <p>Despite the functional suppression of donor leukocytes in sex- and MHC-mismatched recipients, as well as old recipients, there was a therapeutic time period during the initial few weeks during which donor leukocytes were functional before their eventual rejection or functional decline. The eventual rejection of donor leukocytes will likely prevent donor leukocyte engraftment which would help minimize the risk of transfusion-associated graft-versus-host disease. Therefore, using leukocytes from healthy donors with high anti-cancer activity may be a feasible therapeutic concept for treating malignant diseases.</p

    Increased Sleep Fragmentation Leads to Impaired Off-Line Consolidation of Motor Memories in Humans

    Get PDF
    A growing literature supports a role for sleep after training in long-term memory consolidation and enhancement. Consequently, interrupted sleep should result in cognitive deficits. Recent evidence from an animal study indeed showed that optimal memory consolidation during sleep requires a certain amount of uninterrupted sleep

    An Explicit Strategy Prevails When the Cerebellum Fails to Compute Movement Errors

    Get PDF
    In sensorimotor adaptation, explicit cognitive strategies are thought to be unnecessary because the motor system implicitly corrects performance throughout training. This seemingly automatic process involves computing an error between the planned movement and actual feedback of the movement. When explicitly provided with an effective strategy to overcome an experimentally induced visual perturbation, people are immediately successful and regain good task performance. However, as training continues, their accuracy gets worse over time. This counterintuitive result has been attributed to the independence of implicit motor processes and explicit cognitive strategies. The cerebellum has been hypothesized to be critical for the computation of the motor error signals that are necessary for implicit adaptation. We explored this hypothesis by testing patients with cerebellar degeneration on a motor learning task that puts the explicit and implicit systems in conflict. Given this, we predicted that the patients would be better than controls in maintaining an effective strategy assuming strategic and adaptive processes are functionally and neurally independent. Consistent with this prediction, the patients were easily able to implement an explicit cognitive strategy and showed minimal interference from undesirable motor adaptation throughout training. These results further reveal the critical role of the cerebellum in an implicit adaptive process based on movement errors and suggest an asymmetrical interaction of implicit and explicit processes

    Spatial and nonspatial implicit motor learning in Korsakoff’s amnesia: evidence for selective deficits

    Get PDF
    Patients with amnesia have deficits in declarative memory but intact memory for motor and perceptual skills, which suggests that explicit memory and implicit memory are distinct. However, the evidence that implicit motor learning is intact in amnesic patients is contradictory. This study investigated implicit sequence learning in amnesic patients with Korsakoff’s syndrome (N = 20) and matched controls (N = 14), using the classical Serial Reaction Time Task and a newly developed Pattern Learning Task in which the planning and execution of the responses are more spatially demanding. Results showed that implicit motor learning occurred in both groups of participants; however, on the Pattern Learning Task, the percentage of errors did not increase in the Korsakoff group in the random test phase, which is indicative of less implicit learning. Thus, our findings show that the performance of patients with Korsakoff’s syndrome is compromised on an implicit learning task with a strong spatial response component

    Watch and Learn: Seeing Is Better than Doing when Acquiring Consecutive Motor Tasks

    Get PDF
    During motor adaptation learning, consecutive physical practice of two different tasks compromises the retention of the first. However, there is evidence that observational practice, while still effectively aiding acquisition, will not lead to interference and hence prove to be a better practice method. Observers and Actors practised in a clockwise (Task A) followed by a counterclockwise (Task B) visually rotated environment, and retention was immediately assessed. An Observe-all and Act-all group were compared to two groups who both physically practised Task A, but then only observed (ObsB) or did not see or practice Task B (NoB). The two observer groups and the NoB control group better retained Task A than Actors, although importantly only the observer groups learnt Task B. RT data and explicit awareness of the rotation suggested that the observers had acquired their respective tasks in a more strategic manner than Actor and Control groups. We conclude that observational practice benefits learning of multiple tasks more than physical practice due to the lack of updating of implicit, internal models for aiming in the former

    Interference between Sentence Processing and Probabilistic Implicit Sequence Learning

    Get PDF
    During sentence processing we decode the sequential combination of words, phrases or sentences according to previously learned rules. The computational mechanisms and neural correlates of these rules are still much debated. Other key issue is whether sentence processing solely relies on language-specific mechanisms or is it also governed by domain-general principles.In the present study, we investigated the relationship between sentence processing and implicit sequence learning in a dual-task paradigm in which the primary task was a non-linguistic task (Alternating Serial Reaction Time Task for measuring probabilistic implicit sequence learning), while the secondary task were a sentence comprehension task relying on syntactic processing. We used two control conditions: a non-linguistic one (math condition) and a linguistic task (word processing task). Here we show that the sentence processing interfered with the probabilistic implicit sequence learning task, while the other two tasks did not produce a similar effect.Our findings suggest that operations during sentence processing utilize resources underlying non-domain-specific probabilistic procedural learning. Furthermore, it provides a bridge between two competitive frameworks of language processing. It appears that procedural and statistical models of language are not mutually exclusive, particularly for sentence processing. These results show that the implicit procedural system is engaged in sentence processing, but on a mechanism level, language might still be based on statistical computations
    • …
    corecore